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The stability of the buoyancy layer on a uniformly heated vertical wall in a stratified
fluid is investigated using both semi-analytical and direct numerical methods. As in
the related problem in which the excess temperature of the wall is specified, the basic
laminar flow is steady and one-dimensional. Here flows varying in time and with
height are considered, the behaviour being determined by the fluid’s Prandtl number
and a Reynolds number proportional to the ratio of two temperature gradients: the
horizontal one imposed at the wall and the vertical one existing in the far field.
For low Reynolds numbers, the flow is stable with variation only in the wall-normal
direction. For Reynolds numbers greater than a critical value, depending on the
Prandtl number, the flow is unstable and supports two-dimensional travelling waves.
The critical Reynolds number and other properties have been obtained via linearized
stability analysis and are shown to accurately predict the behaviour of the full
nonlinear solution obtained numerically for Prandtl number 7. The stability analysis
employs a novel Laguerre collocation scheme while the direct numerical simulations
use a second-order finite volume method.

1. Introduction
We consider natural convection in a very simple configuration: an extensive fluid

with a stable vertical temperature gradient γs against a heated vertical wall x =0
(figure 1). If the wall is supposed to have a uniform temperature difference �T

over the far field, the Oberbeck–Boussinesq equations admit a simple analytic steady
solution (Prandtl 1952, pp. 422–425); the flow is parallel to the wall, and it and the
excess temperature T (x, y) − T (∞, y) depend only on the distance x from the wall.

It follows (Shapiro & Fedorovich 2004b) that the wall heat flux is uniform, and that
the solution also applies when the excess temperature boundary condition is replaced
by one of a uniform normal temperature gradient (γw , as indicated in figure 1). This
flux condition is perhaps more natural, say, as a model of solar radiation (Tao, Le
Quéré & Xin 2004a) or electrical resistance heating, or of radiative cooling to a clear
night sky. It is thus the more natural condition (Manins & Sawford 1979; Skyllingstad
2003) for Prandtl’s (1952, pp. 422–425) original problem where (Kolobkov 1960, p. 57)

At night the ground cools off due to radiation losses into outer space. This cooling
is conveyed to the strata of air in direct contact with the ground. But the cooling
process is slow and occurs in a thin layer because air is a poor conductor of heat.
Besides, at night there are fewer eddy currents in the atmosphere to mix the air.
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Figure 1. Configuration and base flow: stratified fluid with an evenly heated vertical wall.
The coordinate x is normal out from the wall, and y is vertical with unit vector j .

Unless the ground is horizontal a katabatic wind is generated. Prandtl’s solution
also arises in a rectangular cavity with evenly heated and cooled vertical walls if
the horizontal flux is so strong that the core stratifies and the flow is confined to
a boundary layer circulation around the walls (Kimura & Bejan 1984). The mass
transfer analogue of this configuration describes electrodeposition, for which again
the flux condition is more appropriate than a concentration condition (Eklund et al.
1991; Bark, Alavyoon & Dahlkild 1992).

Further, ‘a vertical flat plate with a uniform flux boundary condition often is easier
to construct and to control in experimentation’ (Polymeropoulos & Gebhart 1966). In
the related problem when the wall is tilted and even an adiabatic condition at
the wall produces flow (Wunsch 1970; Phillips 1970), the (zero) flux condition
is trivially engineered in the mass transfer analogue (Peacock, Stocker & Aristoff
2004).

Although the two steady laminar solutions are identical, their stability properties
need not be since the temperature perturbations satisfy in the one case a Dirichlet
and in the other a Neumann homogeneous boundary condition at the wall. This
appears to have been overlooked by Tao et al. (2004a , b) and Tao (2006), who set
the temperature perturbation to zero at the wall yet refer to it as a ‘uniform-heat-
flux boundary condition’. We show that for small and moderate Prandtl numbers,
including those corresponding to air and water, the choice of thermal boundary
condition makes a significant difference to the stability.

If the steady laminar solutions are attractive, the evolution to them would be
different too; this has been studied recently by Shapiro & Fedorovich (2004a ,b) under
the restriction that the solution remains one-dimensional throughout. In the present
work we relax this restriction and allow two-dimensional variation.

The linear stability of the base solution in the Dirichlet case has been thoroughly
treated by Gill & Davey (1969). In this paper, we extend their results to the heat flux
condition. To our knowledge, the only previous attempts to do this are of limited
availability (Desrayaud, Nguyen & Le Peutrec 1989; Desrayaud & Nguyen 1989;
Desrayaud 1990).

Further, as a linear stability analysis provides only sufficient conditions for instabi-
lity, we supplement it with numerical solutions of the nonlinear two-dimensional
evolution equations. At a particular Prandtl number (Pr = 7), they show supercritical
bifurcation of travelling wave solutions from the steady one-dimensional solution at
the Reynolds number, longitudinal wavenumber, and wave speed predicted by the
linear theory.

That the bifurcation is supercritical is consistent with other one-dimensional natural
convection base flows, namely: the unstratified slot, as demonstrated in numerous
studies (Gershuni & Zhukhovitskii 1976; Bratsun, Zyuzgin & Putin 2003); the
stratified slot, as shown by the numerical simulations of Christov & Homsy (2001);
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and the anabatic wind on a temperature-specified wall, as proven by the weakly
nonlinear analysis of Iyer & Kelly (1978).

We also mention the global stability results for the temperature boundary condition
case obtained by Joseph (1976). These provided lower bounds on the greatest �T for
which all disturbances must monotonically decay; however, as the bounds are very
conservative and the system (with either boundary condition) bifurcates supercritically
at the parameter values predicted by linear stability theory, we do not pursue this
approach here.

2. Formulation
With the length and velocity scales used by Gill & Davey (1969),

δ =

(
4να

gβγs

)1/4

, U�T = �T

(
gβα

νγs

)1/2

(2.1a, b)

(where ν, α, and β are the coefficients of kinematic viscosity, thermal diffusivity, and
thermal expansion) the anabatic wind solution of Prandtl (1952, pp. 422–425) with
the prescribed wall temperature excess �T takes a particularly simple form, free from
dimensionless parameters. The corresponding Oberbeck–Boussinesq equations are

Re
Du
Dt

= −Re∇p + 2ϑ j + ∇2u (2.3a)

RePr
Dϑ

Dt
= −2v + ∇2ϑ (2.3b)

∇ · u = 0, (2.3c)

where u is the velocity, v its vertical component, ϑ the temperature excess (over
the uniform vertical gradient and scaled with �T ), t the time (scaled with δ/U�T ),
and p the pressure excess (over the hydrostatic contribution from the background
stratification and scaled with U 2

�T times the fluid’s density). The governing
dimensionless parameters are the Reynolds and Prandtl numbers:

Re�T ≡ U�T δ

ν
=

∆T

ν

(
4gβ

ν

)1/4 (
α

γs

)3/4

, Pr ≡ ν

α
. (2.4a, b)

On the boundary (in the original formulation of Prandtl 1952 and Gill & Davey
1969), u = 0 and ϑ = 1, while both u and ϑ decay for large x.

The base anabatic wind solution has p constant,

u = jV (x) ≡ je−x sin x, ϑ = Θ(x) ≡ e−x cos x. (2.5a, b)

Since the dimensionless heat flux out of the wall is unity, the same solution and
equations apply to the specified even heat flux problem provided �T is replaced with
γwδ in the velocity and temperature scales, where γw is the component of temperature
gradient normal to the wall, as in figure 1. The length scale δ (2.1a) is determined by
the stratification and is independent of the wall conditions. The new velocity scale
and Reynolds number are

U = γw

(
4gβ

ν

)1/4 (
α

γs

)3/4

, Re =
2γw

Prγs

. (2.6a, b)
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The only other change from the specified wall temperature problem is that now

∂ϑ

∂x
= − 1 (2.7)

instead of ϑ = 1 at x = 0.

3. Linear stability
3.1. The linear stability equations

Although no equivalent of Squire’s theorem applies to this system (Gill & Davey 1969),
our preliminary investigations of three-dimensional disturbances showed that all
infinitesimal oblique waves seemed to be damped more strongly than two-dimensional
waves, so we focus here on the latter. The two-dimensional linear stability of the base
solution is governed by (Gill & Davey 1969):

ψ ′′′′ − 2κ2ψ ′′ + κ4ψ − iκRe{(V − c)(ψ ′′ − κ2ψ) − V ′′ψ} + 2θ ′ = 0, (3.1a)

θ ′′ − κ2θ − iκRePr{(V − c)θ − Θ ′ψ} − 2ψ ′ = 0. (3.1b)

Here the primes denote differentiation with respect to x, and ψ and θ are the Fourier
coefficients of the stream-function and temperature perturbations corresponding to
streamwise wavenumber κ and speed c. On solving the eigenvalue problem for an
eigenvalue c for fixed Re, Pr , and κ , each eigenmode makes a contribution

δu = 2Re{εeiκ(y−ct)(−iκψ i + ψ ′ j )} (3.2a)

δϑ = 2Re{εθeiκ(y−ct)}, (3.2b)

where ε is an undetermined infinitesimal complex amplitude. The boundary conditions
are ψ(0) = ψ ′(0) = ψ(∞) = θ(∞) = 0 and

θ ′(0) = 0; (3.3)

i.e. similar to those of Gill & Davey (1969) but with (3.3) in place of θ(0) = 0.
Our novel method of discretizing and solving the linear stability problem uses

generalized Laguerre collocation and is described in the Appendix.

3.2. The linear stability margin for Pr =7

At a given Pr and Re, the flow is unstable with respect to infinitesimal perturbations
of real wavenumber κ if any c in the spectrum has a positive imaginary part. Given
a point in the Re–κ plane for which this condition holds and another for which it
does not, a marginal point (at which both κ and the c with greatest imaginary part
are real) can be found between the two by bisection.

The marginal curve can then be traced by numerical continuation, as shown in
figure 2 for Pr = 7. The cusp near Re = 130 and κ =0.53, representing an exchange
of stabilities between two modes as discussed in § 3.3, requires a robust continuation
procedure but is easily negotiated by the adaptive skirting algorithm of McBain (2004).

After roughly locating the critical Reynolds number Rec (the minimum Re on
the stability margin), a golden section search (e.g. Greig 1980, p. 37) in κ was used
to find Rec

.
= 8.58134 and κc

.
= 0.4612 at Pr =7. The critical mode has phase speed

cc
.
= 0.3874 and is illustrated in figure 3.

3.3. Effect of Prandtl number and thermal boundary condition

The critical mode was found similarly for many Prandtl numbers between 0 and 103,
for both the temperature excess and temperature gradient boundary conditions. The
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Figure 3. (a) Isotherms and (b) streamlines of one wavelength of the critical mode for
Pr = 7 (Rec = 8.58134, κc = 0.4612, cc = 0.3874). The levels are equally spaced, though the
amplitude is indeterminate; the solid, chain, and dashed lines mark positive, zero, and negative
levels.

critical Reynolds numbers and corresponding wave speeds are plotted in figure 4(a,b)
along with the data of Gill & Davey (1969) for the temperature condition and
Desrayaud (1990) for the heat flux condition. Both previous studies are consistent
with the present work.

While broad qualitative similarities are apparent between the results for the different
thermal boundary conditions, one can also distinguish systematic differences, which
in some important places are quantitatively significant.

In both the Dirichlet and Neumann cases in figure 4(a) Rec (i): is constant for
small Pr; (ii) decreases and then increases; (iii) to a cusp; (iv) then decays rapidly
with increasing Pr; and finally (v) goes like Pr−1/2 as Pr → ∞, the asymptote here
being that derived by Gill & Davey (1969). Correspondingly, the critical wave speed
in figure 4(b): (i) is constant and less than the peak velocity Vmax of the base flow,
marked with a dashed line in figure 4(b); (ii) slowly increases; (iii) jumps closer to
Vmax; (iv) increases past it; and eventually (v) levels off.

The differences are that: (i, ii) the heat flux condition is stabilizing at low Prandtl
numbers with Rec 20–30% higher; (iii) the discontinuity is at a lower Pr , 0.22 vs.
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Figure 4. (a) Reynolds number, (b) speed, and (c) relative buoyant production of the critical
mode for even heating (solid curve) or excess temperature (chain). Open points mark discon-
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0.65; (iv) the heat flux condition is destabilizing just beyond the cusp with Rec less
than half that for the Dirichlet condition. As Pr → ∞, (v), the Neumann and Dirichlet
cases become indistinguishable.



Buoyancy layer on evenly heated vertical wall 459

3.3.1. Kinetic energy and its buoyant production and viscous dissipation

Following Gill & Davey (1969) and Iyer (1973), the Pr effects can be interpreted
in terms of the balance for the kinetic energy of the disturbance:

κReEMImc = −DM + Re M + B (3.4)

where (using a star to denote a complex conjugate)

EM ≡
∫ ∞

0

ψ∗(κ2ψ − ψ ′′) dx, (3.5a)

DM ≡
∫ ∞

0

ψ∗(κ4ψ − 2κ2ψ ′′ + ψ ′′′′) dx, (3.5b)

M ≡ −κIm

∫ ∞

0

ψ∗V ψ ′′ dx, (3.5c)

B ≡ −2Re

∫ ∞

0

ψ∗θ ′ dx; (3.5d)

different but equivalent definitions are given by Gill & Davey (1969).
For a marginally stable disturbance, Im c = 0 so that the disturbance kinetic energy

EM drops out of the balance (3.4), and, following Iyer (1973) in normalizing by the
rate of viscous dissipation DM , we obtain

0 = − 1 + Re
M

DM

+
B

DM

. (3.6)

Since B is the rate of production of disturbance kinetic energy by buoyancy forces, we
call B/DM the relative buoyant production. If this ratio exceeds one-half, the mode is
buoyancy-driven (Iyer 1973); if it were unity, all the energy would be due to buoyancy,
which is the case for large Prandtl numbers. When the ratio is negative, thermal
effects retard the instability. The critical-mode relative buoyant production is plotted
across the Prandtl number range in figure 4(c). For either boundary condition, it may
be seen that the discontinuity in the critical mode as the Prandtl number increases is
from a hydrodynamically driven to a buoyancy-driven mode. This is to be expected,
given that the same phenomenon occurs for the boundary layer on an isothermal
plate in an isothermal fluid (Nachtsheim 1963), in unstratified (Birikh et al. 1972;
Chen & Perlstein 1989; McBain & Armfield 2004) and stratified (Bergholz 1978)
vertical slots, as well as in the Dirichlet case (Gill & Davey 1969).

What is new is the effect of the boundary conditions. In general, compared to
the excess temperature condition, the heat flux condition is ‘less restrictive’ on the
temperature field. This relation between eigenvalue problems with Neumann and
Dirichlet conditions is very common. For example, it is well known that the eigenvalues
of −∇2 are lower for Neumann than Dirichlet conditions (Levine & Weinberger 1986,
for example). Familiar physical examples of the phenomenon include the pitches of
struck bars with free and fixed ends (e.g. Morley 1954, p. 484), the buckling strength
of pivoted and built-in beams (e.g. Morley 1954, pp. 291–296), or the critical Rayleigh
numbers of unstably stratified vertical tubes with insulating and perfectly conducting
walls (Gershuni & Zhukhovitskii 1976, p. 60). Thus, for small Pr , when thermal effects
are retarding the disturbance (B < 0), this thermal effect is enhanced, the system is
stabilized, and Rec increased. Similarly, the second mode, which is buoyancy-driven,
i.e. dependent on a disturbance of the temperature field, sets in more readily, and
takes over from the hydrodynamically driven first mode at a lower Prandtl number.
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That the two cases coalesce as Pr → ∞ is obvious from the asymptotic analysis
of Gill & Davey (1969): in the limit, the second-order conduction term disappears
from the temperature equation and the wall boundary condition has to be dropped.
Moreover, the results (Gill & Davey 1969, figure 11) show that the thermal disturbance
is localized away from the wall.

3.3.2. Summary comparison of flux and temperature excess conditions

So for large Prandtl numbers, the Neumann and Dirichlet problems coincide,
whereas for small Prandtl numbers, the thermal boundary condition does matter.
This is because, for either wall condition, even in the Pr → 0 limit, the hydrodynamic
stability problem does not become independent of the temperature, as it does for
the unstratified slot (Birikh 1966) and isothermal semi-infinite plate (Plapp 1957;
Szewcyzk 1962; Kurtz & Crandall 1962; Nachtsheim 1963). Buoyancy is always
important. This difference between the half-space and the slot arises because the
length scale δ (2.1) depends on the thermal diffusivity. If the stability problem were
independent of buoyancy, the thermal boundary condition would be irrelevant.

The most notable consequence of the change to the heat flux condition is that
the primary buoyancy-driven mode is destabilized, taking over from the primary
hydrodynamically driven mode as the critical mode at a lower Prandtl number, and
becoming unstable at lower Reynolds numbers for Pr just above this. This range
of Pr includes the practically important values Pr = 0.7 (typical of air), for which
the critical Reynolds number drops 57% from 103.1 to 48.5, and Pr =7 (typical of
water), for which it drops 25% from 11.5 to 8.6. Clearly, using the appropriate thermal
boundary condition will have a significant quantitative effect in practical problems.

4. Direct simulation for Pr = 7

Using a second-order fractional step Navier–Stokes solver on a non-staggered
rectangular grid (Armfield & Street 1999, 2002, 2003), (2.3) was solved in the domain
0 � x � X, 0 � y � Y with initial conditions u = 0 and ϑ =0, subject to wall conditions
u = 0 and (2.7) at x = 0, truncated far-field conditions

∂u

∂x
= v =

∂ϑ

∂x
= 0 at x = X, (4.1)

and periodic conditions on u and ϑ at y = 0 and y = Y .
Results were obtained on a domain with X =16 and Y = 2π/κ = 2π/0.454 = 13.84,

using a uniform grid of 55 steps in the y-direction, and a grid of 116 steps lengthening
geometrically with common ratio 1.025 in the x-direction, giving a smallest step of
0.0248 across x = 0. The time step used was �t = 0.0005. The y-wavenumber κ = 0.454
of the domain was chosen to match that of the most unstable mode at Re =9, slightly
above the critical value Rec

.
= 8.58134 at Pr = 7. The linear marginal Reynolds number

at this wavenumber is Rem =8.584, which is close to the critical value, as expected
from the flatness of Rem near its minimum in figure 2.

For small enough Re the fully developed solution is expected to match the
analytical solution (2.5). The numerical solution for Re = 8.5 (< Rem) was found
to have achieved a fully developed steady state by time t = 1000. The fully developed
x-profiles of velocity and temperature agree with the analytical solution to within
±0.002 at any node, demonstrating that the domain and grid are suitable for the base
flow.
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Results were then obtained for Re = 9 (>Rem); a temperature signal at an arbitrary
point (x = 0.264) is presented in figure 5. As can be seen, the fully developed flow
is now time-periodic. Grid convergence, time step, and domain size tests have been
carried out to confirm that the solution is in the asymptotic region for this grid and
time step, and that the influence of the x =X boundary (4.1) is not significant. The
influence of the y = Y boundary, which restricts the wavenumbers that can be present
in the solution, was assessed by obtaining results for 5 � Y � 100; the unresolved
modes for the Y = 13.84 case are not significant, in all cases the wavelength 13.84 was
found to be dominant.

The development for this flow is shown in insets to figure 5, where the initially
multimodal signal evolves into a single mode via the decay of stable modes and the
growth of the linearly unstable mode. Assuming the initial phase is controlled by
one-dimensional transient thermal conduction, i.e. that capacity balances conduction
in (2.3 b), we expect a time scale O(RePr); this is consistent with the signal in
figure 5, for which RePr = 63. Although the solution depicted gradually becomes
two-dimensional, the early stages are essentially one-dimensional, as in the analysis
of Shapiro & Fedorovich (2004b), and the time scale O(RePr) is consistent with
their figure 5, for example (noting that it corresponds to a time scale of Pr in
their units). Also evident around t =400 are Brunt–Väisälä oscillations (resulting
from capacity–stratification and inertia–buoyancy balances in the one-dimensional
governing equations) with characteristic period πRePr1/2 .

= 74.8.
After the decay of the initial transients, the numerical solution behaves very much

as predicted by linear stability theory. In the period 2000< t < 5000, numerical signal
processing gives the growth rate as 0.001370 and the dominant frequency as 0.0275,
whereas the results predicted using the linear stability method of § 3 for the fastest
growing mode at the same Reynolds and Prandtl numbers, and wavenumber are
κIm c = 0.001372 and κRe c/2π = 0.02797. The discrepancies are within 0.2% and
2%, respectively, showing that the nonlinear effects that eventually limit the growth
have only a small effect on the time-behaviour of the most unstable mode, and that
the numerical solution accurately resolves the evolution.



462 G. D. McBain, S. W. Armfield and G. Desrayaud

2π/κ

y

0 16
x

(c) (d)

2π/κ

0 16
x

2π/κ

y

0 16

(a) (b)

2π/κ

0 16
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and (d ) 0.01545 × −4(1)5. Line styles as figure 3.

The final unsteady flow consists of waves travelling vertically; that is, up the natural
convection boundary layer that has formed on the heated wall. Figure 6 contains
the isotherms and streamlines for the Re = 9 solution, where the wave structure is
clearly seen in both the temperature and velocity fields. The wavelength is equal to
the vertical extent of the domain and the wave speed is 0.38 – approximately the
same as the real part of the speed c = 0.387 + 0.00302i of the fastest growing mode
of linear theory. We also plot the difference between the solution and its streamwise
mean for easier comparison with the critical mode of the linear theory (figure 3).

Finally, a solution was obtained at a much higher Reynolds number, Re = 20;
figure 7 contains the temperature and stream-function contours, again showing
the travelling wave although with considerably increased amplitude and modified
structure – a sharper peak faces upstream. The modified structure is a result of
nonlinear effects. Nonlinear effects limit the growth of the primary unstable linear
mode by modifying the mean flow and by transferring energy to harmonics that are,
in a linear sense, stable (Stuart 1958). The effect on the mean flow can be seen in
figure 8, where the vertical-mean temperature and velocity profiles are presented for
the two cases with Re >Rem. The Re = 9 and base analytical results are seen to be
very close, indicating that nonlinear effects lead to only a small modification of the
base flow at this Reynolds number. The Re = 20 result shows a much larger variation
with respect to the base flow, with the temperature at the wall and the peak velocity
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both about 10% lower, while the temperature and velocity in the outer region of the
boundary layer are both higher. The effect of the waves is evidently to increase the
effectiveness of heat and momentum transfer from the inner to the outer region of
the boundary layer.
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4.1. Direct simulation at a low Prandtl number, Pr = 0.1

Noting that the system admits two critical modes, depending on the Prandtl number,
another simulation was carried out at Pr = 0.1. The Reynolds number was chosen as
Re = 135, again slightly higher than the critical value (Re = 108.5). The temperature
signal at a point is plotted in figure 9. Again the unstable oscillation predicted by
linear stability analysis appears, grows at the predicted rate, and then saturates.

This simulation also demonstrates the three time scales mentioned above: the
early conduction–capacity time RePr = 13.5; the Brunt–Väisälä oscillation period
πRePr1/2 = 134.1; and the linear stability oscillation period 2π/κRe c

.
= 59.5. In

addition, for Pr < 1, the lower viscosity leads to underdamping and an overshoot
in the initial one-dimensional development (Shapiro & Fedorovich 2004a) decaying
over a viscous–inertial balance time of order Re = 135, which is evident in the period
0 < t < 500 in figure 9. Although this viscous decay time scale happens to be close to
the Brunt–Väisälä period in this example (as πPr1/2 .

=0.99), the two effects are easily
distinguished since the Brunt–Väisälä oscillations are non-dissipative in origin.

4.2. Heat transfer rate and temperature difference

A single measure of the effect of the travelling waves is the Nusselt number, defined
as the mean ratio of the local heat transfer coefficient

h ≡ kγw

T |x =0 − T |x→∞
=

k

ϑ |x = 0δ
(4.2)

(where k is the fluid thermal conductivity) to that prevailing everywhere under the
base flow h0 = k/δ; i.e.

Nu ≡ κ

2π

∫ 2π/κ

0

h

h0

dy =
κ

2π

∫ 2π/κ

0

dy

ϑ |x =0

. (4.3)

As seen in figure 8, the travelling waves have the effect of increasing the heat transfer
away from the wall and thereby decreasing the temperature at the wall, which will
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Figure 10. Nusselt number versus Re for κ = 0.454; arrow: linear theory (Rem = 8.584);
points: direct numerical simulation.

lead to a Nusselt number greater than one. Nusselt numbers obtained for a range of
Reynolds numbers at Pr = 7 and κ = 0.454 are shown in figure 10. The figure provides
an approximation for Rem of slightly greater than 8.5, corresponding closely to the
linear marginal value 8.584.

5. Concluding discussion
Prandtl’s exact steady one-dimensional solution of the Oberbeck–Boussinesq

equations for a buoyancy layer on a vertical wall in a stably stratified fluid holds not
only for the boundary condition in which the wall temperature increases linearly with
altitude at the same rate as the far-field stratification, but also for the more realistic
uniform heat flux condition. We have studied the stability of this system with respect
to two-dimensional vertically periodic disturbances.

Using generalized Laguerre collocation for infinitesimal disturbances, we determined
the linear stability margin, the critical Reynolds number, and the critical wave mode
for Prandtl numbers from zero to 103. The linear stability results are qualitatively
similar to those for the specified temperature excess problem, though there are notable
systematic differences which were explained with reference to the disturbance kinetic
energy balance and which are particularly quantitatively significant in the practically
important range of Prandtl numbers including air and water.

Direct simulation has been used to obtain full solutions to the governing equations
for Pr = 7, a fixed streamwise wavenumber κ = 0.454 close to the critical value
κc = 0.4612, and a set of Reynolds numbers spanning the associated linear marginal
value Rem = 8.584. Plotting the Nusselt number against Reynolds number for the
numerical results showed that the nonlinear system bifurcates supercritically and the
plot provides a good approximation of the marginal Reynolds number.

A detailed comparison of the direct simulation and stability analysis results was
carried out for Re = 9, showing that the simulation and stability analysis produce
nearly identical results for the frequency and growth rate.

It is noted that a vertical length scale is imposed on the direct simulation solution
by the height Y = 2π/κ of the domain. For the results presented this was chosen to
correspond to the most unstable wavelength obtained from the stability analysis for
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Re = 9. The simulation can then only contain modes with wavenumber �κ , for integer
� up to half the number of vertical grid steps. Results have also been obtained for
other domain heights to ensure that unresolved modes for the 2π/κ =13.84 case are
not significant; in all cases at Re = 9 the wavelength 13.84 was found to be dominant.

The full numerical results show that the nonlinear effects, which eventually limit the
amplitude of the unstable mode, only slightly distort the shapes of the base flow and
the first harmonic at Re =9. This indicates that results from linear stability analysis
can be expected to provide a good representation of the flow structure and behaviour
over some range of Re beyond the marginal value. The semi-analytical stability code
is 105–106 times more computationally efficient than the direct simulation code, and
may therefore be used far more effectively in large-scale studies of the behaviour of
flows of the type considered here.

G.D.M. and S.W.M. acknowledge funding from The University of Sydney’s Sesqui
Postdoctoral Fellowship scheme and the Australian Research Council’s Discovery
scheme, respectively. We thank one of the reviewers for noticing the presence of the
Brunt–Väisälä frequency in the temperature history of figure 5 and for suggesting the
additional run at Pr = 0.1.

Appendix. Numerical solution of the linear stability equations
A.1. Discretization

The system (3.1) was discretized with ordinate-based interior collocation (Frazer,
Duncan & Collar 1938; Villadsen & Stewart 1967). As in our linear stability study of
the slot (McBain & Armfield 2004), the method closely follows that of Weideman &
Reddy (2000) for the Orr–Sommerfeld equation. That is, the general term a(x)f (k)(x)
is discretized as

∑
j aiD

k
ijfj , where fields are represented by a column of ordinates at

n collocation points xi , e.g. ai = a(xi), and the ‘differentiation matrices’ are

Dk
ij =

k∑
m=0

(
k

m

)
β (k−m)(xi)

β(xj )
l
(m)
j (xi). (A 1)

Here the lj (x) are the polynomials of degree n − 1 with the property that lj (xi) = δij

and β(x) is chosen to enforce the boundary conditions.
Here we introduce two modifications: in the choice of the collocation points and

in the treatment of the homogeneous Neumann boundary condition (3.3).

A.2. Gauss–Laguerre–Radau points

For boundary value problems on 0 � x < ∞, Weideman & Reddy (2000) use the roots
of the Laguerre polynomial

Ln(x) = L(0)
n (x). (A 2)

Collocation points should generally be chosen as the abscissae of a Gaussian
quadrature rule (Boyd 2001, ch. 4; though we note this has been queried by Fornberg
1996, ch. 4). In the Gauss–Laguerre–Radau quadrature rule (Davis & Rabinowitz
1984, pp. 223–224), these are the roots of the generalized Laguerre polynomial
L(α+1)

n (x) which means (A 2) corresponds to α = −1, but the generalized Laguerre
polynomials are only defined for α > −1, so that there is no rule corresponding to the
roots of (A 2).

We therefore choose instead the roots of L(α+1)
n (x) with α > −1, in particular α = − 1

2
,

which corresponds to a weight function x−1/2e−x in the orthogonality relation with
an inverse square-root singularity at the wall, just as for Chebyshev polynomials
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(Hochstrasser 1965, p. 774). Methods for computing Gauss–Laguerre–Radau points
have been described by Gautschi (1994) and Laurie (2001).

A.3. Homogeneous Neumann condition for collocation

A new method for treating the homogeneous Neumann condition f ′(0) = 0 in
interior collocation methods is derived here, based on the derivation of Hermite’s
interpolation formula (Fröberg 1965, pp. 146–148). For collocation on the zeros of a
polynomial � (x), Lagrange’s fundamental polynomials (Fröberg 1965, pp. 142–143)
are lj (x) = � (x)/(x − xj )�

′(xj ). Say we attempt to modify a set of basis functions
φj (x) = β(x)lj (x)/β(xj ) already containing one coercion factor so that they satisfy
(3.3) by using another coercion factor:

φ̃j (x) =
νj (x)

νj (xj )
φj (x) =

νj (x)

νj (xj )

β(x)

β(xj )
lj (x). (A 3)

This satisfies φ̃′
j (0) = 0 provided

ν ′
j (0)

νj (0)
= −

φ′
j (0)

φj (0)
. (A 4)

The simplest solution is the linear coercion factor

νj (x) ≡ x − φj (0)

φ′
j (0)

. (A 5)

Differentiating the modified basis functions d times gives

φ̃
(d)
j (x) = d

k0 + x−1
j

k0xj

φ
(d−1)
j (x) +

(k0 + x−1
j )x − 1

k0xj

φ
(d)
j (x) (A 6)

where

k0 ≡ � ′(0)

� (0)
+

β ′(0)

β(0)
. (A 7)

The differentation matrices Dd
ij =φ

(d)
j (xi) can be computed using the algorithm

of Weideman & Reddy (2000), and then combined according to (A 6) to obtain
the differentiation matrices incorporating the homogeneous Neumann boundary
condition (3.3). This requires, however, the constant k0, which depends on the choice
of the collocation points and the first coercion function β(x).

Here, where � (x) = −L
(α)
n+1(x) and β(x) = e−x/2 (to enforce decay for large x), the

constant k0 defined in (A 7) is

k0 = − n + 1

α + 1
− 1

2
. (A 8)

A.4. Implementation

The above collocation method gives a generalized eigenvalue problem of the form
Lq = cMq for eigenvalue c, which we convert to M−1Lq = cq and solve by a standard
QR algorithm (Anderson et al. 1999; Eaton 2002).

The collocation method as described contains three parameters: the number of
interior collocation points n, the generalized Laguerre α, and a length scale �; the
last arises since f�(x) = x/� for � > 0 is an automorphism on the domain 0 � x < ∞
and so can be applied to the collocation rules. Here we chose � ≈ 0.2 (to move the
nodes closer to the wall) and, as noted above, α = − 1

2
, and determined n by first by

reproducing the results in table 1 of Gill & Davey (1969), and then by observing
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the change in the c of greatest imaginary part with increasing n at Pr = 7, Re =9,
and κ = 0.454. The error decreases exponentially for n up to about 60–70 and then
slowly increases again; 64 points were used in subsequent computations. Coded in
GNU Octave (Eaton 2002) and run on a 1.6 GHz Intel Pentium IV, the algorithm
takes about 0.35 s to compute the c spectrum for given Pr , Re, and κ .

REFERENCES

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J.,

Greenbaum, A., Hammarling, S., McKenney, A. & Sorenson, D. 1999 LAPACK Users’
Guide, 3rd edn. SIAM.

Armfield, S. W. & Street, R. 1999 The fractional-step method for the Navier–Stokes equations
on staggered grids: The accuracy of three variations. J. Comput. Phys. 153, 660–665.

Armfield, S. W. & Street, R. 2002 An analysis and comparison of the time accuracy of fractional-
step methods for the Navier–Stokes equations on staggered grids. Intl J. Numer. Meth. Fluids
38, 255–282.

Armfield, S. & Street, R. 2003 The pressure accuracy of fractional-step methods for the Navier–
Stokes equations on staggered grids. ANZIAM J. 44, C20–C39.

Bark, F. H., Alavyoon, F. & Dahlkild, A. A. 1992 On unsteady free convection in vertical slots
due to prescribed fluxes of heat and mass at the vertical walls. J. Fluid Mech. 235, 665–689.

Bergholz, R. F. 1978 Instabilities of steady natural convection in a vertical fluid layer. J. Fluid
Mech. 84, 743–768.

Birikh, R. V. 1966 On small perturbations of a plane parallel flow with cubic velocity profile.
J. Appl. Math. Mech. 30, 432–438.

Birikh, R. V., Gershuni, G. Z., Zhukhovitskii, E. M. & Rudakov, R. N. 1972 On oscillatory
instability of plane–parallel convective motion in a vertical channel. J. Appl. Math. Mech. 36,
707–710.

Boyd, J. P. 2001 Chebyshev and Fourier Spectral Methods , 2nd edn. Dover.

Bratsun, D. A., Zyuzgin, A. V. & Putin, G. F. 2003 Non-linear dynamics and pattern formation
in a vertical fluid layer heated from the side. Intl J. Heat Fluid Flow 24, 835–852.

Chen, Y.-M. & Perlstein, A. J. 1989 Stability of free-convection flows of variable-viscosity fluids
in vertical and inclined slots. J. Fluid Mech. 198, 513–541.

Christov, C. I. & Homsy, G. M. 2001 Nonlinear dynamics of two-dimensional convection in a
vertically stratified slot with and without gravity modulation. J. Fluid Mech. 430, 335–360.

Davis, P. J. & Rabinowitz, P. 1984 Methods of Numerical Integration , 2nd edn. Academic.

Desrayaud, G. 1990 Stability of flow near a heat-flux plate and comparison with numerical
simulations in a square cavity. Report 1990/LT/01. CNAM.

Desrayaud, G. & Nguyen, T. H. 1989 Instabilités thermonconvectives dans une cavité à flux
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